Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1542791

ABSTRACT

The new WHO reference standard allows for the definition of serum antibodies against various SARS-CoV-2 antigens in terms of binding antibody units (BAU/mL) and thus to compare the results of different ELISA systems. In this study, the concentration of antibodies (ABs) against both the S- and the N-protein of SARS-CoV-2 as well as serum neutralization activity were evaluated in three patients after a mild course of COVID-19. Serum samples were collected frequently during a period of over one year. Furthermore, in two individuals, the effects of an additional vaccination with a mRNA vaccine containing the S1-RBD sequence on these antibodies were examined. After natural infection, the antibodies (IgA, IgG) against the S1-protein remained elevated above the established cut-off to positivity (S-IgA 60 BAU/mL and S-IgG 50 BAU/mL, respectively) for over a year in all patients, while this was not the case for ABs against the N-protein (cut-off N-IgG 40 BAU/mL, N-IgA 256 BAU/mL). Sera from all patients retained the ability to neutralize SARS-CoV-2 for more than a year. Vaccination resulted in a rapid boost of antibodies to S1-protein but, as expected, not to the N-protein. Most likely, the wide use of the WHO reference preparation will be very useful in determining the individual immune status of patients after an infection with SARS-CoV-2 or after vaccination.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/standards , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/diagnosis , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
2.
mSphere ; 6(1)2021 02 24.
Article in English | MEDLINE | ID: covidwho-1102156

ABSTRACT

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2, and two other patients (4%) were positive in only one of the six serological assays employed. For the remaining 88%, antibody response against the S protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. None of the sera enhanced infection of human cells with SARS-CoV-2 at any dilution, arguing against antibody-dependent enhancement of infection in our system. Regarding neutralization, only six patients (12%) could be classified as high neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.IMPORTANCE There is strong interest in the nature of the neutralizing antibody response against SARS-CoV-2 in infected individuals. For vaccine development, it is especially important which antibodies confer protection against SARS-CoV-2, if there is a phenomenon called antibody-dependent enhancement (ADE) of infection, and if there is cross-protection by antibodies directed against seasonal coronaviruses. We addressed these questions and found in accordance with other studies that neutralization is mediated mainly by antibodies directed against the spike protein of SARS-CoV-2 in general and the receptor binding site in particular. In our test system, utilizing human cells for infection experiments, we did not detect ADE. However, using a novel diagnostic test we found that antibodies against the coronavirus 229E might be involved in cross-protection to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Coronavirus Infections/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibody-Dependent Enhancement/immunology , Binding Sites/immunology , Female , Hospitalization , Humans , Male , Neutralization Tests/methods , Nucleocapsid/immunology , Seasons , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Surveys and Questionnaires , Vaccines/immunology
3.
Viruses ; 12(12)2020 11 27.
Article in English | MEDLINE | ID: covidwho-948868

ABSTRACT

The relationship between the nasopharyngeal virus load, IgA and IgG antibodies to both the S1-RBD-protein and the N-protein, as well as the neutralizing activity (NAbs) against SARS-CoV-2 in the blood of moderately afflicted COVID-19 patients, needs further longitudinal investigation. Several new serological methods to examine these parameters were developed, validated and applied in three patients of a family which underwent an ambulatory course of COVID-19 for six months. The virus load had almost completely disappeared after about four weeks. Serum IgA levels to the S1-RBD-protein and, to a lesser extent, to the N-protein, peaked about three weeks after clinical disease onset but declined soon thereafter. IgG levels rose continuously, reaching a plateau at approximately six weeks, and stayed elevated over the observation period. Virus-neutralizing activity reached a peak about 4 weeks after disease onset but dropped slowly. The longitudinal associations of virus neutralization and the serological immune response suggest immunity in patients even after a mild clinical course of COVID-19.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , COVID-19/blood , COVID-19/pathology , COVID-19/virology , COVID-19 Testing , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Longitudinal Studies , Male , Pharynx/virology , Phosphoproteins/immunology , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL